Kidd Blood Group System:

Outwardly Simple with Hidden Complexity

Janis R. Hamilton, MS, MT(ASCP)SBB
Manager, Immunohematology Reference Laboratory
American Red Cross, Southeastern Michigan Region
Detroit, Michigan USA

The need is constant.
The gratification is instant.
Give blood.™

35th International ISBT Congress
Academy Day
June 3, 2018
Disclosures

Honoraria

- Grifols, SA
- Bio-Rad Laboratories, Inc
- Immucor, Inc
Objectives

- Review basic information on JK antigens and antibodies.
- Discuss current information on variant and null alleles and basis of ln(Jk) Jk null phenotype.
- Introduce topology model that locates codons from variant and null SNP alleles in the JK protein.
- Discuss the impact of variant alleles on JK serological studies.
- Examine the role of JK antibodies in renal transplant.
Outwardly Simple
JK System (ISBT 009)

- **Gene SLC14A1**
 - Chromosome 18, 11 exons
 - Exons 4-11 coding

- **Antigens**
 - \(\text{Jk}^a \) (JK1), \(\text{Jk}^b \) (JK2)
 - \(\text{Jk}^3 \) (JK3)
 - Well developed at birth

- **Antibodies implicated in HTR and HDFN**
JK alleles

- \(Jk^a/Jk^b \) defined by 3 single nucleotide substitutions
 - 2 silent
 - 1 missense \(838G>A \)

Diagram: Wester, et al. Used with permission
Common JK phenotypes

<table>
<thead>
<tr>
<th></th>
<th>Whites</th>
<th>Blacks</th>
<th>Asians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jk(a+b-)</td>
<td>26</td>
<td>52</td>
<td>23</td>
</tr>
<tr>
<td>Jk(a+b+)</td>
<td>50</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Jk(a-b+)</td>
<td>24</td>
<td>8</td>
<td>27</td>
</tr>
</tbody>
</table>

JK System (ISBT 009) Review

- Antigens on multipass membrane protein
 - 45-69 kDa
 - 389 amino acids
 - 10 membrane spanning domains; 5 extracellular loops

- Functions as urea transport
 - Homologous to UT-B
 - Found on red blood cells, kidney, other tissues
 - Allows concentration of urine in kidney
 - Stability of red cell as pass through renal medulla
Anti-Jk^a/anti-Jk^b

- Difficult to detect: Dosage. Rapid decrease in titer. Solid phase techniques-more sensitive

- Usually IgG or mixture of IgG/IgM
 - Mostly IgG3 > IgG1; few - IgG2
 - One anti-Jk^b studied contained anti-IgG4

- 50% of Ab bind complement
 - Only IgM fraction.

- Few literature reports of naturally occurring JK ab
Anti-Jka/anti-Jkb

- Historically -- relatively low immunogenic potential of Ag
- Neither antibody common
- Anti-Jkb rarer than anti-Jka

- Tormey and Stack (Blood 2009;114:4279-4282)

 Jka: ranked as 4th most potent immunogen when persistence of antibody considered. Previously 10th

 (too few anti-Jkb to evaluate)
JK autoantibodies

Auto anti-Jka

- AIHA: apparent suppression of Jka
 - Drug independent: Aldomet
 - Drug dependent: Chlorpropamide

- Benign: several depended on the presence of parabens used as preservative in LISS reagents
JK autoantibodies

- Autoanti-Jk\(^b\): rare
- Autoanti-Jk3: two examples in pregnancy
 - Eckley et al. Transfusion 2013, S78-030L
- Transient suppression of JK antigens: production of anti-Jk3 and anti-Jk\(^a\)
 - Combs et al. Transfusion 2005, S8-30C.
 - Issitt PD Transfusion 1990;30:46-50
Jk null phenotype Jk(a-b-) JK:-3

- Recessive Jk(a-b-)
 Generally recognized by anti-Jk3 production
 Most frequently Polynesians (0.1-1.4%), Finns
 extremely rare: multiple Asian populations, Caucasian, African (very few)

24 genetic backgrounds recognized by ISBT: JK*01 and JK*02
 exon deletion
 nucleotide substitutions – premature stop codon
 amino acid substitution
 intron changes – splice site mutations

<table>
<thead>
<tr>
<th>JK*02N.01</th>
<th>c.342-1G>A</th>
<th>Polynesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK*02N.06</td>
<td>c.871T>C</td>
<td>Finnish</td>
</tr>
</tbody>
</table>

Others reported in abstract form
2M urea lysis

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Urea transport</th>
<th>Hemolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jk(^a)/Jk(^b)</td>
<td>Passive/Active</td>
<td>1 min</td>
</tr>
<tr>
<td>Jk(_{null})</td>
<td>Passive</td>
<td>30 min</td>
</tr>
</tbody>
</table>

Read after 2 min

Controls

Slide: Wester, et al. Used with permission
JK null phenotype

- Autosomal dominant Jk(a-b-) In(Jk)
 Garcia-Sanchez F et al. Vox Sang 2017;112(S1):53 // Transfusion 2017; 57(S3):29A
 - Not associated with mutations in SCL14A1
 - Spanish kindreds: all carried 84 bp deletion in ZNF850 gene (19q13)
 - Loss of C2H2 zinc finger-encoding domain

- Normal SLC14A1 mRNA but reduced UT-B1 on RBC membrane
- Similar, but not identical, ZNF850del84 mutation in Japanese In(Jk)

- Inability to concentrate urine
- Mood and/or anxiety disorders in Spanish families
JK variant alleles

- **JK*01 alleles / Jk(a+w)**
 - 5 variants assigned allele number (ISBT)

- **JK*02 alleles / Jk(b+w)**
 - 2 variants assigned allele number (ISBT)

?? weakened expression of antigen OR partial antigen with possible alloantibody production OR both ??
<table>
<thead>
<tr>
<th>JK variant alleles: weak phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK*01W.01 c.130G>A p.Glu44Lys most frequent</td>
</tr>
<tr>
<td>JK*01W.02 c.511T>C p.Trp171Arg</td>
</tr>
<tr>
<td>JK*01W.03 c.28G>A p.Val10Met</td>
</tr>
<tr>
<td>JK*01W.04 c.226G>A p.Val76Ile</td>
</tr>
<tr>
<td>JK*01W.05 c.742G>A p.Ala248Thr</td>
</tr>
<tr>
<td>JK*02W.01 c.548C>T p.Ala183Val</td>
</tr>
<tr>
<td>JK*02W.02 c.718T>A p.Trp240Arg</td>
</tr>
</tbody>
</table>

Topology summary – SNP variants

Jk-weak variants
- N-terminal half and cytoplasmic tail
- Top and bottom membrane layers
- Less structurally disruptive

Jk-negative variants
- C-terminal helices near Jk^{a/b}
- Mid-membrane layer
- More structurally disruptive
- Some near urea transport pore

from Ramsey G. Transfusion 2017;57(S3):29A
JK variant alleles: discrepancies

- Apparent JK antibody in antigen positive individual
- Discrepancies between prior serological or molecular testing and current results; variation with different reagents
- Apparent Jk(a-b-)
 homzygous for a weak JK allele or an allele with a weakened Ag paired with a silenced allele

\[\text{JK}^{*01W.01}/\text{JK}^{*01W.01} \quad \text{c.}130\text{G}\rightarrow\text{A} \]

\[\text{altered JK}^{*01}/\text{JK}^{*02N.08} \quad \text{c.}134\text{T}\rightarrow\text{C} \text{ novel in JK}^{*01} \]

#Vege S et al. Transfusion 2015;55S:35A
JK antigen typing challenges

<table>
<thead>
<tr>
<th>Sample</th>
<th>Anti-Jk(^a)</th>
<th>Anti-Jk(^b)</th>
<th>Anti-Jk(^a) MS15</th>
<th>Anti-Jk(^b) MS8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2+</td>
<td>0</td>
<td>3+</td>
<td>3+</td>
</tr>
<tr>
<td>2</td>
<td>3+</td>
<td>2+</td>
<td>0 to +(^w)</td>
<td>3+</td>
</tr>
<tr>
<td>3</td>
<td>1+ to 3+</td>
<td>2+</td>
<td>0</td>
<td>NT</td>
</tr>
</tbody>
</table>

From: Whorley T, et al. Transfusion 2009; 49S: 48A
Abstract (S16-040E)
JK antigen typing challenges

<table>
<thead>
<tr>
<th>Sample</th>
<th>Anti-Jka</th>
<th>Anti-Jkb</th>
<th>Anti-Jka MS15</th>
<th>Anti-Jkb MS8</th>
<th>DNA nt change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2+</td>
<td>0</td>
<td>3+</td>
<td>3+</td>
<td>JK*A/B 548C>T (Ala183Val)</td>
</tr>
<tr>
<td>2</td>
<td>3+</td>
<td>2+</td>
<td>0 to +w</td>
<td>3+</td>
<td>JK*A/B 511T>C (Trp171Arg)</td>
</tr>
<tr>
<td>3</td>
<td>1+ to 3+</td>
<td>2+</td>
<td>0</td>
<td>NT</td>
<td>JK*A/B 130G>A (Glu44Lys)</td>
</tr>
</tbody>
</table>
Case 1: Is it autoantibody?

- 13 year old female with sickle cell anemia
- multiple transfusions
- 2006: phenotyped for Ag-matched transfusions

<table>
<thead>
<tr>
<th></th>
<th>anti-Jk(^a) (polyclonal)</th>
<th>Anti-Jk(^b) (polyclonal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto RBC by hypotonic wash</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Positive control</td>
<td>2+</td>
<td>2+</td>
</tr>
</tbody>
</table>

- 2008: Hospital reports positive antibody screen possible anti-Jk\(^a\) in gel; Positive DAT
Case 1: plasma/eluate

<table>
<thead>
<tr>
<th>CELL</th>
<th>Rh</th>
<th>Kell</th>
<th>Duffy</th>
<th>Kidd</th>
<th>Lewis</th>
<th>P</th>
<th>MN</th>
<th>LISS</th>
<th>PEG</th>
<th>Eluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>TC</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
<tr>
<td>WB</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0⁺⁺</td>
<td>+</td>
<td>0⁺⁺⁺⁺</td>
</tr>
</tbody>
</table>

Note: Anti-IgG, Anti-IgG, PEG-IgG
Case 1: JK allo or auto?

<table>
<thead>
<tr>
<th></th>
<th>DAT</th>
<th>Anti-Jka Monclonal</th>
<th>Anti-Jka Polyclonal</th>
<th>Plasma PEG-IgG</th>
<th>Eluate PEG-IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008 WB</td>
<td>+ micro</td>
<td></td>
<td></td>
<td>2+</td>
<td>NT</td>
</tr>
<tr>
<td>2008 auto RBC by hypo wash</td>
<td>Neg</td>
<td>3+</td>
<td>2+</td>
<td>1+w</td>
<td>NT</td>
</tr>
</tbody>
</table>

2008: Possible warm autoantibody with anti-Jk^a specificity
No adsorption studies performed.

Transfused with Jk(a-) RBC from this date.
Case 1: follow-up 2012

- Anti-Jk\(^a\) no longer detectable PEG or gel
- Hypotonic wash autologous RBC:
 - Anti-Jk\(^a\) score 4 \((1^+w)\) monoclonal reagents
 - Anti-Jk\(^b\) score 8 \((2^+)\)
- Sequence JK exons
 - Exon 4: 130G/A (Glu44Lys) weakened Jk\(^a\)
 - Exon 7: 588G/G (silent)
 - Exon 9: 838G/A (Asp280Asn) confirm Jk(a+b+)
- Anti-Jk\(^a\): alloantibody
Autoanti-Jka reports

- *Auto-anti-Jka* in Evans' syndrome with negative direct antiglobulin test.
- *Autoimmune hemolytic anemia with anti-Jka* specificity detected by means of the gel technic
- Mixed autoimmune haemolysis in a SLE patient due to aspecific and *anti-Jka autoantibodies*
- *Anti-Jka autoimmune* hemolytic anemia in an infant
- Delayed type transfusion reaction due to anti-S antibody in patient with *anti-Jka autoantibody* and multiple alloantibodies

Could variant *JK**01 alleles be involved?
Case 2

Velliquette R, et al. Transfusion 2015;55S:34A

- Filipino male. Not recently transfused
 - Jk(a+b-)
 - Anti-Jk\(^b\)
 - DAT positive: warm autoantibody
 - multiple Jk(a+b-) RBC transfused
Case 2: Subsequent sample

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>Eluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jk(a+)</td>
<td>+micro</td>
<td>1+</td>
</tr>
<tr>
<td>Jk(b+)</td>
<td>2+</td>
<td>+w</td>
</tr>
<tr>
<td>Jk(a-b-)</td>
<td>negative</td>
<td>negative</td>
</tr>
</tbody>
</table>

Adsorption/elution studies with plasma:
Separable anti-Jk\(^a\), anti-Jk\(^b\).
No anti-Jk3
Case 2: Family Study

<table>
<thead>
<tr>
<th></th>
<th>Phenotype</th>
<th>Genotype</th>
<th>XM with Pt plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Jk(a+b-)</td>
<td>JK01W.01/JK02N.01</td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>Jk(a+b-)</td>
<td>JK01W.01/JK02N.01</td>
<td>Neg</td>
</tr>
<tr>
<td>Father</td>
<td>Jk(a+b+)</td>
<td>JK01W.01/JK02</td>
<td>Pos</td>
</tr>
<tr>
<td>Brother</td>
<td>Jk(a+b-)</td>
<td>JK*01W.01/JK01W.01</td>
<td>Neg</td>
</tr>
</tbody>
</table>
JK variant alleles in antibody ID

- Genotyping may be helpful in
 - alloantibody vs. autoantibody determination
 - identifying suitable donors not apparent by serological testing

- Are JK antibodies produced by individuals with partial alleles always clinically significant?
JK and Renal transplant

- UT-1 (JK protein) found on endothelial cells of renal medulla, vasa recta, and renal tubular epithelial cells

- Five reports suggesting JK antibodies may be involved in rejection of incompatible kidney

JK as histocompatibility Ag

- Allograft rejection 2-10 years after transplant
- Simultaneous appearance of JK antibody
 - 2 anti-Jk\(^a\); 2 anti-Jk\(^b\)
- 3 patients reported non-compliance with immunosuppressive regime. (1- no information)
- Transplanted kidney thought to stimulate primary or anamnestic response
JK as histocompatibility Ag

- 5th patient received RBC transfusion 18 years prior to transplant and immediately post renal transplant.
- 2 hours post transfusion: Acute TR due to anti-Jkα
- Rejection of graft
Summary

- Jka, Jkb, Jk3. Protein involved in urea transport
- JK Ab clinically significant in transfusion reactions and HDFN.
- Allo and autoantibody. May be hard to detect.
- 31 recognized alleles causing weak or silenced JK expression. More reported in abstracts
- Jk(a-b-) ln(Jk) : ZNF850del84 mutation; chromosome 19
Summary

- Weak/silenced SNP alleles cause amino acid changes having patterns in their location within the membrane.
- Variant alleles can cause discrepancies in JK serological/molecular antigen typing, misidentification of Jk(a-b-), apparent alloAb production in JK-positive patient.
- JK antibodies may impact renal graft survival
Thank You!